what :
Home > Search > inlet

Objectspage : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
metro External Metronome that outputs bangs
Metro takes one optional argument which is the metronome time in milliseconds. The left inlet takes int which starts it with a non-zero value and stops it with the value zero. The right inlet takes int to change the metronome speed. The outlet sends bang.
midiformat External Format data into a MIDI message
Format data into a MIDI message. Midiformat takes ints or lists of two ints denoting MIDI messages and formats them as raw MIDI bytes. You set the channel with the argument and the last inlet.
midiinfo External Set a pop-up menu with current names of MIDI devices
When midiinfo receives a bang or int in its left inlet, it sends a series of messages which will set up a pop-up menu to a list of MIDI output devices. If you check "Evaluate Item Text" in the pop-up menu dialog, you can connect the right outlet of the menu to a MIDI output object to select MIDI devices by name. A number in midiinfo's right inlet creates a list of MIDI input devices.
Modal Analysis External The Modal Analysis object analyzes notes played during a user specified window of time and tells what mode you're playing in.

created by V.J. Manzo
The modal_analysis object takes incoming notes in its left inlet and determines in what mode and tonic you’re playing when a bang is sent to its right inlet. The object attempts to filter out repetitions and organize notes to infer a mode. Double clicking the object will reveal a window similar to that of the modal change object which shows the mode as well as the scale degree distances that make up the scale and the particular mode’s context within the larger pitch collection.
The ordered scale degrees are output as a list from the objects left outlet and the scale degree distances are output from its second outlet.
The modal analysis+ object does everything modal_analysis does, but is also set to integrate with the modal change object to trigger a new mode change when a mode is analyzed. A user could conceivably play a scale, have it analyzed and then generate chords from that scale in real-time.


created by V.J. Manzo
www.vjmanzo.com | www.vincemanzo.com
Modal Change External The Modal Change object is a compositional algorithm to control modality. It outputs scale degrees and creates tables and lists that adhere to one of the 7 modes.

created by V.J. Manzo
The Modal Change object allows a user to specify a tonic and diatonic mode in its two inlets and get the pitch class value of each scale degree out its eight outlets. A user can send a pitch class number or a letter name message to its left inlet to set the tonic. A message box with a mode name such as major, minor, Phrygian, Lydian b7, can be sent to the right inlet to build up a scale from the given tonic. The object will output the scale degrees for any tonic within the modes of the major scale, the melodic minor scale, the harmonic minor scale, and the harmonic major scale (the major scale with flatted 6). Instead of using one of the mode names to build a scale, a user can also send a message with the number of whole steps and half steps desired to build their scale, and receive the scale degree pitch classes from its outlets.
Double clicking the object will open a display that allows the user to see what mode they’re in and other information related to the mode including scale degree distances that make up the scale and the particular mode’s context within the larger pitch collection.
The object can receive all of the organized pitch class data into a table or by using an internal table with the argument table1.
The object can also receive the organized pitch class data into a coll list or by using an internal coll list with the argument scale. The coll list also has an added feature: it will take any incoming pitch and filter it to the nearest note from the selected scale.
This allows you to set the tonic and mode, and filter all incoming pitch data so that whatever note is played, it will conform to the diatonic pitch collection you’ve selected.

created by V.J. Manzo
www.vjmanzo.com | www.vincemanzo.com
Modal Mediant External The Modal Mediant object shows chromatic mediant (chromatic third) relationships for a given mode.

created by V.J. Manzo
The modal median object receives a tonic and mode name in its inlets and populates a list of modes in a chromatic median relationship with the initial mode. When one of these related modes is selected from the list, the object automatically repopulates the list with modes related to the new key.

created by V.J. Manzo
www.vjmanzo.com | www.vincemanzo.com
Modal Prog External The Modal_Prog object takes n chord functions and displays the triads of user inputted chord progressions.

created by V.J. Manzo
The modal prog object takes a list of chords (as in a progression) in its right inlet and outputs each of those chords one at a time to the modal triad object when a bang is sent to the left inlet. The object integrates with the modal_triad object and will interpret any message that modal triad does.
By default, a new list of chords triggered when a list is currently being played will sound on the next bang received. With the optional argument '@immediate 0', a new list of chords triggered when a list is currently being played will sound as soon as each chord from the first list has been played.

created by V.J. Manzo
www.vjmanzo.com | www.vincemanzo.com
Modal Shift External the Modal Shift object is an addon for my Modal Change object which controls modality. When a bang is sent to the modal_shift object, it finds a related mode by changing just once scale degree from the original mode.
The modal shift object is similar to the modal_shiftlist object, but it is optimized to randomly choose one of the related modes when a bang is sent to its left inlet.

Related modes are defined as the object takes the pitches of the scale and moves each scale degree up or down one at a time to see if a new diatonic mode can be formed. This process will list 42 related modes for any of the major scale modes, 28 related modes for any of the melodic minor scale modes, 21 related modes for any of the harmonic minor scale modes, and 21 related modes for any of the harmonic major scale modes.


created by V.J. Manzo
www.vjmanzo.com | www.vincemanzo.com
Modal ShiftList External The Modal_Shiftlist object is like the Modal_Shift object, but stores all related modes into a selectable menu

created by V.J. Manzo
The modal shiftlist object receives a tonic and mode name in its inlets and populates a list of all related modes sharing 6 of 7 notes. It takes the pitches of the scale and moves each scale degree up or down one at a time to see if a new diatonic mode can be formed. This process will list 42 related modes for any of the major scale modes, 28 related modes for any of the melodic minor scale modes, 21 related modes for any of the harmonic minor scale modes, and 21 related modes for any of the harmonic major scale modes.
When one of these related modes is selected from the list, the object automatically repopulates the list with modes related to the new key.

created by V.J. Manzo
www.vjmanzo.com | www.vincemanzo.com
Modal Triad External The Modal_Triad object generates chords in root position or inversions. It takes traditional chord names, chord function numbers, Roman numerals, tonicizations, etc. It even takes altered chords like Ebdom7b9#11.

created by V.J. Manzo
The modal triad object allows a user to play tertian chords of any quality. It receives scale data from the modal_change object and, when a tonic and mode is selected, the object receives the numbers 1-8 in its leftmost inlet to output the notes of the chord function associated with that number. For example, in major keys, the numbers 1, 4 and 5 are always major chords, 2, 3, and 6 are minor, so, if C Major is selected, a 2 sent to the modal_triad object will yield the notes of a d minor chord.
For each selected chord, the notes of that chord are sent to the object’s 7 outlets in the following order: root, third, fifth, seventh, ninth, eleventh, thirteenth. Alterations like flat ninth or sharp eleventh are inferred by the chord function as it relates to the selected tonic and mode.
The second inlet of the object allows the chord tones, received as pitch classes, to be restricted to one octave.
The object also takes Roman numeral functions to yield chords. The standard capital Roman numerals for major, lower case Roman numerals for minor are used. A lower case Roman numeral iv in the key of C Major will yield an F minor chord regardless of the fact that chord has non-diatonic chord tones in it, the Ab.

A capital Roman numeral with a plus sign next to it will yield an augmented chord, and a lowercase Roman numeral with a zero next to it will yield a diminished chord.
In the same manner, a user can use letter names to build chords. A capital C will yield a C Major chord while a lower case e will yield an e minor chord. A capital C plus will yield an augmented chord and a lower case d zero will yield a d diminished chord.
(set to C Major)
This object also receives messages for tonicizations. A user can send the message Roman numeral V/5, to yield the 5 of 5 (a D Major chord in the key of C Major). The V Chord Tonicizations produce a Dominant 7th chord for each scale degree in the selected mode. That is, the root, 3rd, 5th, and 7th will form a Dominant 7th Chord exactly one perfect 5th above a given scale degree. The 9th, 11th, and 13th pitches of the chord are inferred according to the selected mode and NOT the mode from which the tonicizing chord prevails.
Similarly the object allows other types of tonicizations including leading tone tonications and minor four tonicizations. Augmented 6th chords and Neopolitan chords can also be implemented.
It even takes altered chords like Ebdom7b9#11.

created by V.J. Manzo
www.vjmanzo.com | www.vincemanzo.com
modal_pc_match External The modal_pc_match object takes an incoming note in its left inlet and compares it against the diatonic pitch classes of any scale.



created by V.J. Manzo
The modal_pc_match object takes an incoming note in its left inlet and compares it against the diatonic pitch classes of any scale as defined by the modal_change object. If the incoming pitch matches one of the pitch classes of the scale, the object outputs a bang from one of its first seven outlets.
The object also defines the chromatic notes between diatonic scale degrees. If an incoming pitch matches a chromatic scale degree, the object outputs a bang from one of the next 14 outlets. For example, a C# played in the key of C Major is between scale degrees 1 & 2 - C & D - a whole step. An incoming C# in any octave will send a bang out of the outlet marked “Match Scale Degree #1” [read Sharp One].
The incoming note may also match a chromatic scale degree between a step and a half (3 semitones). In this case, two chromatic notes are next to each other separated by a half step. The lower of the two chromatic notes is referred to as the “#1” (assuming that the step and half interval is located between scale degrees 1 and 2 as is the case in the sixth mode of the harmonic minor scale, Lydian #2). The other chromatic note is closer to the higher scale degree and would be referred to as “b2”, thus the object would output the message “Match Scale Degree b2”. For example, imagine a G played in the key of A Harmonic Minor (between scale degrees 6 & 7 - F & G#). An F# is interpreted as “#6” and the G is interpreted as “b7”. Note: only the harmonic minor and harmonic major scales and their modes have two scale degrees separated by a step and a half.
In addition to matching chromatic pitches, the modal_pc_match object also outputs the chromatic pitch classes out of its last 14 outlets. Note that this means some notes will be redundant. For example, scale degree_b2 will be the same pitch as scale degree_#1 in Major keys. Once again, this will not be the case in the modes of harmonic minor and harmonic major where two pitch classes are separated by 3 semitones.






created by V.J. Manzo

www.vjmanzo.com | www.vincemanzo.com
motormix.out External The motormix.out object takes non-channelized data from your Max patch and adds an appropriate channel number.
The motormix.out object takes non-channelized data from your Max patch and adds an appropriate channel number. For example, if you send the message "fader " into the first inlet, the result will be "fader 0 " (since channel 0 is the first valid motormix channel). Messages that don't need to be channelized (like the bank and group messages) can be sent any input, and will be output without change.
multijoin External Joins messages, ints, floats, lists, and symbols into a list.
Input to inlets can be of variable or fixed length, which is determined by the arguments. Output is determined by the configuration of multijoin.
multiple Abstraction list based object
Multiplies the elements of a supply according to a list of multiples sent to the right inlet. The element 0 in the multiple list will erase the respective element of the supply.
mw_stepsallad External A simple, creative stepsequencer. Input list of integers/rhythm-eights/numbers, and let the stepsallad step through the list.
From the help file:

Arguments: a list of integers to set how long the steps in the sequence should be;
inlet: bang to step, set n to set sequence steps;
left outlet: bang at start of every step;
middle outlet: bang at pause steps;
right outlet: bang to indicate that sequence restarts;
--
Available for Max/MSP in OSX, in two versions, one for PowerPC and one for Intel machines.
A version for Max/MSP in MS Windows should be here soon.
page : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Libraries
Panaiotis Objects
debug: SELECT prenom, nom FROM auteurs RIGHT JOIN auteur_libraries USING (id_auteur) WHERE auteur_libraries.id_library='122' Panaiotis The Mac version is UB.

These Max objects have been enhanced since the documentation to the left was written. Help files for the objects provide information on enhancements.

The matrix object has been substantially upgraded. It now combines features of unpack, spray, funnel, append, and prepend into one object. This makes a great object to place between controllers and jit objects because it acts like a multi-prepend. There are new configuration commands and enhancements to the old: even, odd, mod,and range, among others). Most commands can be applied to inlets of outlets. There is also a mute function that adds another layer of control. Matrixctrl support has been enhanced. See the help file for full details and examples.

Most other objects now fully support floats. RCer and autocount will count in float values, not just integers.

Notegen16 is a 16 channel version of its predecessor: notegen. It is more generalized and much more efficient.

4855 objects and 135 libraries within the database Last entries : December 23rd, 2023 Last comments : 0 0 visitor and 35978124 members connected RSS
Site under GNU Free Documentation License