what :
Home > Search > if

Objectspage : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
ctr.shuffle~ External Read random segments from a buffer~ within a range
ctr.shuffle~ can read different sections of a buffer sequentially, producing a continuously changing result that can be defined by several parameters including playback direction (forward, backward and alternating).
cue External [cue] is a Max external that lets you cue Max messages to be dispatched at specified transport times.
[cue] supports batching of messages, settings certain messages to expire if they end up getting behind schedule, timeline scrubbing and looping, and debugging.
curve~ External Exponential ramp generator
curve~ is similar to line~. It produces a signal that goes from an initial to target value over a specified number of milliseconds. However, it produces non-linear ramps using a piecewise approximation of an exponential function. You specify the parameter to this exponential function in the curve~ object's right inlet. Values from 0 to 1 produce an "exponential" curve when increasing in value and values from -1 to 0 produce a "logarithmic" curve. The closer to 0 the curve parameter is, the closer the curve is to a straight line, and the farther away the parameter is from 0, the steeper the curve. curve~ can also accept a list of up two or three arguments (the previous curve parameter is used if there are two arguments), or a list with two or more value, time, parameter triples. curve~ is limited to 42 such triples in a single list. The object's approximation of the exponential becomes better when the vector size is smaller, but the object also becomes more computationally expensive.
cv.jit.centroids External centroids are a very cheap and robust way of doing motion tracking.
Centroids, or center of mass, are the coordinates of the point where the number of ON pixels left of the x value is equal to the number of ON pixels to the right, and the number of pixels over the y value equals the number below. If there is only a single object in an image, centroids are a very cheap and robust way of doing motion tracking. Note that the centroids do not necessarily fall on an ON pixel, for instance in the case of a U-shaped object. Since the mass is used to calculate the centroids, cv.jit.centroids will also return this value from its second outlet.
cv.jit.dilate External This will make shapes fatter and although it will make noise all the more noticeable
In binary mode, a pixel will be marked ON if any of its neighbours is ON. This will make shapes fatter and although it will make noise all the more noticeable, it is a good way to get rid of small holes in an image. In greyscale mode, however, each pixel is given the maximum value of the pixels around it. You can toggle between both mode using the "greyscale", or "grayscale" attribute followed by a 0, or a 1. You can also change the shape of the neighbourhood with the "mode" attribute. Mode 0 uses 8 neighbours, and mode 1 uses 4 neighbours forming a cross.
cv.jit.erode External This operation does somewhat the opposite of "dilate".
This operation does somewhat the opposite of "dilate". In binary mode, a pixel will stay ON only if all of its neighbours are also on. This can be a good way to get rid of noise but will also make your shapes thinner and holes wider. In greyscale mode, a pixel will get the minimum value of its neighbours. "Greyscale" and "mode" attributes function as for cv.jit.dilate.
cv.jit.floodfill External The floodfill algorithm takes a pixel coordinate specified by the "seed" attributes and checks the value of that pixel.
The floodfill algorithm takes a pixel coordinate specified by the "seed" attributes and checks the value of that pixel. If it is OFF, it does nothing and returns a blank matrix. If the pixel is ON, however, it will "flood-fill" the blob this pixel belongs to with ON values and return only that blob. This works exactly like the flood-fill tools in popular paint or image editing software.
cv.jit.framesub Abstraction Difference between consecutive frames.
cv.jit.HSflow External Estimates the optical flow using the Horn-Schunk method.
Estimates the optical flow using the Horn-Schunk method. This technique assumes that changes in optical flow, over the image, are relatively uniform. It is slightly better at estimating faster movements that the Lucas-Kanade technique, but it will also become unreliable if the motion is too fast. It is better at finding the optical around contrast edges and returns generally cleaner results than Lucas-Kanade.
cv.jit.label External This algorithm scans through the image and gives each connected component an individual value.
This algorithm scans through the image and gives each connected component an individual value. If you set the "mode" attribute to its default value of 0, it will paint the top-leftmost blob with ones, and will number blobs incrementally moving right and down. In mode 1, however, it will paint the blobs with the number of pixels in that blob. This can allow you, for instance, to filter only blobs that have sizes between such and such a value. Furthermore, in either mode, you can use the "threshold" attribute to erase all the blobs that are smaller than the threshold value. This is an extremely powerful (and surprisingly cheap) way of filtering noise out. In order to accommodate potentially large numbers of blobs, or large blob sizes, the output is a 1-plane long matrix. There is a hard-coded limit of 2048 possible blobs.
cv.jit.mean External Computes the mean value of each pixel over time.
Computes the mean value of each pixel over time. Works a lot like the regular Max object "mean". In order to clear the matrix, you must send the "reset" message rather than "clear", as "clear" will not reset the internal frame counter to zero. Accepts any data type or planecount. Note, however, that due to rounding errors, char and long calculations are going to deviate downwards from the actual mean. If accuracy is an issue, or you plan to feed cv.jit.mean a large number of frames, convert to floating point beforehand.
cv.jit.shift External Track image regions using MeanShift and CAMShift algorithms.
Track image regions using MeanShift and CAMShift algorithms.
cv.jit.shift.draw Abstraction Visualization utility for cv.jit.shift.
Visualization utility for cv.jit.shift.
cv.jit.stddev External Computes the standard deviation of the incoming matrices.
Computes the standard deviation of the incoming matrices. The standard deviation is simply the square root of the variance, so the same result can be obtained with cv.jit.variance and a jit.op object. The standard deviation is a measure of how much sample values vary from the mean, or in other words, how wide the distribution on either side of the mean is. About 65% of sample values fall within one standard deviation of the mean, whereas 95% are within twice that value. This measurement is very useful when it comes to setting bounds or threshold values, for instance in a background subtraction operation. If the mean value of a background pixel is 50, and the standard deviation is 10, then a pixel valued at 80 would be considered foreground. However, if the standard deviation is around 30, there is a good chance that it belongs to the background.
cv.jit.touches Abstraction Track greyscale/binary image regions.
cv.jit.touches uses the meanshift algorithm to track blobs in a greyscale or binary image. The object was designed to be used in the context of multi-touch interfaces (hence the name) but it can also be used in other situations, such as overhead tracking of people in a space.
page : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

Libraries
A-Chaos Lib
debug: SELECT prenom, nom FROM auteurs RIGHT JOIN auteur_libraries USING (id_auteur) WHERE auteur_libraries.id_library='21' Sier library of non-linear strange attractors for max under macintosh sys, extended from Richard Dudas Chaos Collection, including the source (24 dynamic non-linear systems:: a-baker, a-clifford, a-collatz, a-duffing, a-fibonacci, a-ginger, a-henon-heilles, a-henon, a-henonf, a-henonphase, a-ikeda, a-jong, a-logistic, a-logistic1, a-lorenz, a-lorenz.e,a-lyapunov, a-navier-stokes, a-navier-stokes.e, a-rossler, a-stein, a-stein1, a-torus and a-verhulst)
AHRS Max Library
debug: SELECT prenom, nom FROM auteurs RIGHT JOIN auteur_libraries USING (id_auteur) WHERE auteur_libraries.id_library='168'Giuseppe Torre The AHRS Library (Attitude Heading Reference System) is a set of Max externals that allows you to perform a series of basic calculations for 3D/4D vectorial math used in aerodynamics.
If you are using a three axis accelerometer and a three-axis magnetometer check out the"ahrs_triad" object which enables you to find the orientation of your cluster of sensor with respect to the Earth fixed coordinates.
artificial tango
debug: SELECT prenom, nom FROM auteurs RIGHT JOIN auteur_libraries USING (id_auteur) WHERE auteur_libraries.id_library='104'Olaf Matthes The artificial tango library is a collection of externals for Max/MSP dealing with recognition, analysis and generation of musical structures and events. Most objects take MIDI data as input.
In order to use the objects from the artificial tango library FTM 2.0 has to be installed on your system.
Cosm
debug: SELECT prenom, nom FROM auteurs RIGHT JOIN auteur_libraries USING (id_auteur) WHERE auteur_libraries.id_library='147'Wesley Smith
Graham Wakefield
Cosm is an integrated collection of externals and abstractions to assist the construction of navigable, sonified virtual worlds using Max/MSP/Jitter. Cosm has been designed to require only minimal changes to existing Max/MSP/Jitter patches to support a number of features valuable in the creation of virtual worlds.

Supports six-degrees-of-freedom (6DoF) navigation using quaternions, spatial audio using 3rd order Ambisonics, distance filtering and doppler, collision detection using spherical intersection (query sphere), world boundaries, stereographic control, 3D field interaction, and a strategy for remote rendering.
FuzzyLib
debug: SELECT prenom, nom FROM auteurs RIGHT JOIN auteur_libraries USING (id_auteur) WHERE auteur_libraries.id_library='139'Alain Bonardi
Isis Truck
When manipulating human knowledge such as perception, feelings, appreciation, veracity of facts, etc., the classical logic that recognize only two truth degrees (true or false) is not always the most suitable.

To solve this problem, more than two degrees are considered in the non-classical logics. The fuzzy logic is one of these logics.

In this logic, facts are represented through membership functions: when the membership value is equal to 1 the fact is exactly true; when it is equal to 0 the fact is exactly false; in between there is an uncertainty about the veracity of the fact.

These membership functions are called "fuzzy subsets". They can be of different shapes: gaussian, trapezoidal, triangular, etc.

Thus the aim of the fuzzy logic is to propose a theoretical framework for the manipulation - representation and reasoning - of such facts.

The Fuzzy Lib library implements all the tools that are necessary to handle this manipulation: representation of a fuzzy subset (among them are the fuzzification, defuzzification and partitioning), reasoning process (generalized modus ponens, fuzzy implications, t-norms, t-conorms, etc.).

This version 1 of the Fuzzy Lib enables to implement fuzzification, uncertain reasoning and defuzzification for any number of data in the framework of Max/MSP environment.
Granular Toolkit
debug: SELECT prenom, nom FROM auteurs RIGHT JOIN auteur_libraries USING (id_auteur) WHERE auteur_libraries.id_library='44'Nathan Wolek set of externals and abstractions developed using several granular synthesis concepts. Effects available in this download include pitch shifting, spatializing, \"clouds\", chord production and looping.
hi.tools
debug: SELECT prenom, nom FROM auteurs RIGHT JOIN auteur_libraries USING (id_auteur) WHERE auteur_libraries.id_library='158'Max Egger An alternative to Max/MSP’s hi object, 2010 by Max Egger

hi.tools lets you communicate with human interface devices (HID), like mice, joysticks or do-it-yourself usb thingies that follow the HID specification.
imp.dmx
debug: SELECT prenom, nom FROM auteurs RIGHT JOIN auteur_libraries USING (id_auteur) WHERE auteur_libraries.id_library='157'David Butler imp.dmx is a cross-platform collection of Max/MSP/Jitter abstractions for dealing with DMX data in various forms. It focuses around the use of jitter matrices to store data, which the objects then read and write to. The aim is to provide the bridge between your patch and whatever object or method you use to output DMX from Max. The abstractions use native Max objects only, excepting the Art-Net patches which use some custom java networking objects, included in the distribution package.
If you have any questions or suggestions, please contact me at david@theimpersonalstereo.com.
Check for updates at http://www.theimpersonalstereo.com.
int.lib
debug: SELECT prenom, nom FROM auteurs RIGHT JOIN auteur_libraries USING (id_auteur) WHERE auteur_libraries.id_library='97'Oli Larkin int.lib is a set of abstractions/javascripts that lets you interpolate between different presets by navigating a 2D graphical environment. It's similar in concept to the Audiomulch Metasurface, Color blobs and the Hipnoscope but implements a gravitational system, allowing you to represent presets with variable sized balls. As you move around the space, the size of the balls and their proximity to the mouse cursor affects the weight of each preset in the interpolated output.
jr.abstractions
debug: SELECT prenom, nom FROM auteurs RIGHT JOIN auteur_libraries USING (id_auteur) WHERE auteur_libraries.id_library='126'Jakob Riis A set of simple abstractions for everyday maxmsp life
KN-Lib 2.7
debug: SELECT prenom, nom FROM auteurs RIGHT JOIN auteur_libraries USING (id_auteur) WHERE auteur_libraries.id_library='109'Roland Cahen KN-Lib is a collection of everyday abstraction tools. It contains mouse and keyboards facilities, converters, calculation, random, interval and scale generators, midi utilities...etc

(The old version is no longer available.
If necessary it can be downloades at :
ftp://ftp.forumnet.ircam.fr/pub/max/FAT/misc)
make-enveloppe
debug: SELECT prenom, nom FROM auteurs RIGHT JOIN auteur_libraries USING (id_auteur) WHERE auteur_libraries.id_library='16'Fredrik Olofsson seven abstractions that creates different kinds of envelopes. perfect for grain synthesis. including adsr, blackman, curve, gauss, hamming, hanning, trapezoid.
Max
debug: SELECT prenom, nom FROM auteurs RIGHT JOIN auteur_libraries USING (id_auteur) WHERE auteur_libraries.id_library='12' Cycling74 Max/MSP is a graphical environment for music, audio, and multimedia. In use worldwide for over fifteen years by performers, composers, artists, teachers, and students, Max/MSP is the way to make your computer do things that reflect your individual ideas and dreams.
MaxAlea
debug: SELECT prenom, nom FROM auteurs RIGHT JOIN auteur_libraries USING (id_auteur) WHERE auteur_libraries.id_library='96'Carl Faia MaxAlea contains various objects for random distributions and functions. MaxAlea was begun as a Max port of an existing PatchWork Library created in 1991-2 by Mikhail Malt. While the distributions and functions found in MaxAlea are similar to those found in the Patchwork version ,there are many differences in their functioning. The environment of Patchwork is static and is not designed for real-time work. Part of the incentive for creating these objects to work with Max was to have a dynamic and real-time environment with which to experiment and work with these algorithms in a manner as simple and straightforward as possible. One can change variables and manipulate the output in many ways in real-time. There are several different versions of the various stochastic models/processes best presented in the now classic references by Denis Lorrain and Charles Dodge. Carl Faia has used a variety of sources for the creation of this library which include the Lorrain, Dodge and Malt implementations as well as sources found on the WorldWideWeb. The externals found in the package include several random distributions, examples of random walks and 1/f noise algorithms, as well as one or two utilities written specifically for the MaxAlea library. Carl Faia wanted to make a coherent collection (as he thought Malt had managed to do in PatchWork) of these various algorithms and provide an interface easily accessible using the Max environment for real-time control. All these algorithms have been created using a seeded version of the random function found in the standard AINSI library. That is, each time the function is first run there will always be a different set of random numbers (unlike the random funtions found in Max, PatchWork and other versions of random number generators).
MSP
debug: SELECT prenom, nom FROM auteurs RIGHT JOIN auteur_libraries USING (id_auteur) WHERE auteur_libraries.id_library='7' Cycling74 Max/MSP is a graphical environment for music, audio, and multimedia. In use worldwide for over fifteen years by performers, composers, artists, teachers, and students, Max/MSP is the way to make your computer do things that reflect your individual ideas and dreams.
net.loadbang.groovy
debug: SELECT prenom, nom FROM auteurs RIGHT JOIN auteur_libraries USING (id_auteur) WHERE auteur_libraries.id_library='130'Nick Rothwell net.loadbang.groovy is a package which supports the Groovy scripting/programming language within MXJ for Max/MSP.

Groovy is an agile, dynamic language for the Java Virtual Machine (JVM) which builds upon Java by providing features such as closures and support for domain-specific programming (such as XML processing and database access). It integrates seamlessly with Java and is very similar in syntax.
Optimized Gates
debug: SELECT prenom, nom FROM auteurs RIGHT JOIN auteur_libraries USING (id_auteur) WHERE auteur_libraries.id_library='34'Stephen Kay 7 different optimized gates ("bgate" for bangs, "igate" for ints, "fgate" for floats, "sgate" for symbols, and "lgate" for lists. These do not need to do a message lookup, since they only deal with one data type. Also includes "andGate" and "orGate" by David Roach)
ri.Lorenz MSP objects
debug: SELECT prenom, nom FROM auteurs RIGHT JOIN auteur_libraries USING (id_auteur) WHERE auteur_libraries.id_library='169'Ryo Ikeshiro Calculates the Lorenz dynamical system and various modifications at signal rate. Can be controlled by either floats or signal for sample-accurate timing.

Currently only available for Mac OS X 10.5 or later (Intel). The following have only been tested on Max 5.
SDIF
debug: SELECT prenom, nom FROM auteurs RIGHT JOIN auteur_libraries USING (id_auteur) WHERE auteur_libraries.id_library='43'Matt Wright SDIF (Sound Description Interchange Format) support in Max/MSP
SFA Max/MSP Library
debug: SELECT prenom, nom FROM auteurs RIGHT JOIN auteur_libraries USING (id_auteur) WHERE auteur_libraries.id_library='172'Stefano Fasciani The SFA-MaxLib is a collection of Max/MSP objects developed in the context of the VCI4DMI. It includes functions and utilities in the form of FTM externals, FTM abstractions and Max abstractions. FTM is a shared library for Max/MSP developed by IRCAM, which provides a small and simple real-time object system and a set of optimized services to be used within Max/MSP externals.

List of FTM Externals: sfa.eig - eigenvalues; sfa.inputcombinations - combination generator; sfa.levinson - levinson-durbin recursion; sfa.lpc2cep - lpc to cepstra conversion; sfa.rastafilt - rasta filter; sfa.rmd - relative mean difference; sfa.roots - polynomial roots;

List of Abstractions: sfa.bark.maxpat - energy of the Bark bands from time domain frame;sfa.bark2hz_vect.maxpat - Herts to Bark conversion;sfa.barkspect.maxpat - energy of the Bark bands from spectrum; sfa.ceil.maxpat - ceil function; sfa.featfluxgate.maxpat - gated distance on stream of feature vectors; sfa.fft2barkmx.maxpat - utility sub-abstraction of sfa.bark; sfa.fft2barkmxN.maxpat - utility sub-abstraction of sfa.barkspect; sfa.hynek_eq_coeff.maxpat - hynek equalization coefficients; sfa.hz2bark.maxpat - Hertz to Bark conversion; sfa.hz2bark_vect.maxpat - Hertz to Bark conversion for vectors; sfa.hz2mel.maxpat - Hertz to Mel conversion; sfa.idft_real_coeff.maxpat - utility sub-abstraction of sfa.rasta-plp; sfa.maxminmem.maxpat - minimum and maximum of a stream of data; sfa.mfcc.maxpat - MFCC coefficients; sfa.modalphafilter.maxpat - 1st order IIR lowpass on a stream of vectors; sfa.nonlinfeqscale.maxpat - linear spectrum to Bark or Mel scale conversion; sfa.rasta-plp.maxpat - PLP and RASTA-PLP coefficients; sfa.spectmoments.maxpat - 4 spectral moments (centroid, deviation, skewness, kurtosis); sfa.3spectmoments+flatness.maxpat - 3 spectral moments (centroid, deviation, skewness) and the spectral flatness; sfa.spectralflux.maxpat - spectral flux on stream of spectrum vectors; sfa.spectralfluxgate.maxpat - gated spectral flux on stream of spectrum vectors; sfa.std.maxpat - standard deviation; sfa.win_to_fft_size.maxpat - smaller FFT size given frame size; sfa.GCemulator.maxpat – 3D gestural controller emulator;
Theater Max!
debug: SELECT prenom, nom FROM auteurs RIGHT JOIN auteur_libraries USING (id_auteur) WHERE auteur_libraries.id_library='93'Jonathan Snipes
David Beaudry
A collection of abstractions for Max/MSP specifically for real-time control of sound.
vRand abstractions
debug: SELECT prenom, nom FROM auteurs RIGHT JOIN auteur_libraries USING (id_auteur) WHERE auteur_libraries.id_library='77'Gary Lee Nelson These new objects assume that you have downloaded and installed one of the the externals from the Random Objects library. There are OS9, OSX and PC versions. (Thanks again to Jeremy Bernstein.) I have not tested these new abstractions in OS 9 or Windows and would appreciate hearing from anyone you can verify that they work.
xjimmies
debug: SELECT prenom, nom FROM auteurs RIGHT JOIN auteur_libraries USING (id_auteur) WHERE auteur_libraries.id_library='100'Zack Settel
Jean-michel Dumas
Parts of the nSLAM audio suite.
The "xjimmies" library included with nSLAM v2.0 offers new functionality not defined in the original "jimmies" running under Max/MSP.
Specifically, a number of new objects have been added for working with multichannel sound, sound source simulation and immersive audio. The name of the library, formerly "jimmies", was changed to "xjimmies", since the "X"-platform library runs in both PD (Windows/OSX/Linux) and now, in Max/MSP (Windows/OSX).

4855 objects and 135 libraries within the database Last entries : December 23rd, 2023 Last comments : 0 0 visitor and 49906654 members connected RSS
Site under GNU Free Documentation License